skip to main content


Search for: All records

Creators/Authors contains: "Daghistani, Anas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The proliferation of GPS-enabled devices has led to the development of numerous location-based services. These services need to process massive amounts of streamed spatial data in real-time. The current scale of spatial data cannot be handled using centralized systems. This has led to the development of distributed spatial streaming systems. Existing systems are using static spatial partitioning to distribute the workload. In contrast, the real-time streamed spatial data follows non-uniform spatial distributions that are continuously changing over time. Distributed spatial streaming systems need to react to the changes in the distribution of spatial data and queries. This article introduces SWARM, a lightweight adaptivity protocol that continuously monitors the data and query workloads across the distributed processes of the spatial data streaming system and redistributes and rebalances the workloads as soon as performance bottlenecks get detected. SWARM is able to handle multiple query-execution and data-persistence models. A distributed streaming system can directly use SWARM to adaptively rebalance the system’s workload among its machines with minimal changes to the original code of the underlying spatial application. Extensive experimental evaluation using real and synthetic datasets illustrate that, on average, SWARM achieves 2 improvement in throughput over a static grid partitioning that is determined based on observing a limited history of the data and query workloads. Moreover, SWARM reduces execution latency on average 4 compared with the other technique. 
    more » « less
  2. null (Ed.)
    The wide spread of GPS-enabled devices and the Internet of Things (IoT) has increased the amount of spatial data being generated every second. The current scale of spatial data cannot be handled using centralized systems. This has led to the development of distributed spatial data streaming systems that scale to process in real-time large amounts of streamed spatial data. The performance of distributed streaming systems relies on how even the workload is distributed among their machines. However, it is challenging to estimate the workload of each machine because spatial data and query streams are skewed and rapidly change with time and users' interests. Moreover, a distributed spatial streaming system often does not maintain a global system workload state because it requires high network and processing overheads to be collected from the machines in the system. This paper introduces TrioStat; an online workload estimation technique that relies on a probabilistic model for estimating the workload of partitions and machines in a distributed spatial data streaming system. It is infeasible to collect and exchange statistics with a centralized unit because it requires high network overhead. Instead, TrioStat uses a decentralised technique to collect and maintain the required statistics in real-time locally in each machine. TrioStat enables distributed spatial data streaming systems to compare the workloads of machines as well as the workloads of data partitions. TrioStat requires minimal network and storage overhead. Moreover, the required storage is distributed across the system's machines. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Online sampling-supported visual analytics is increasingly important, as it allows users to explore large datasets with acceptable approximate answers at interactive rates. However, existing online spatiotemporal sampling techniques are often biased, as most researchers have primarily focused on reducing computational latency. Biased sampling approaches select data with unequal probabilities and produce results that do not match the exact data distribution, leading end users to incorrect interpretations. In this paper, we propose a novel approach to perform unbiased online sampling of large spatiotemporal data. The proposed approach ensures the same probability of selection to every point that qualifies the specifications of a user's multidimensional query. To achieve unbiased sampling for accurate representative interactive visualizations, we design a novel data index and an associated sample retrieval plan. Our proposed sampling approach is suitable for a wide variety of visual analytics tasks, e.g., tasks that run aggregate queries of spatiotemporal data. Extensive experiments confirm the superiority of our approach over a state-of-the-art spatial online sampling technique, demonstrating that within the same computational time, data samples generated in our approach are at least 50% more accurate in representing the actual spatial distribution of the data and enable approximate visualizations to present closer visual appearances to the exact ones. 
    more » « less